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Molecular Informatics utilises many ideas and concepts to find 
relationships between molecules. The concept of similarity, 
where molecules may be grouped according to their biological 
effects or physicochemical properties has found extensive use 
in drug discovery. Some areas of particular interest have been 
in lead discovery and compound optimisation. For example, 
in designing libraries of compounds for lead generation, one 
approach is to design sets of compounds ‘similar’ to known 
active compounds in the hope that alternative molecular 
structures are found that maintain the properties required while 
enhancing e.g. patentability, medicinal chemistry opportunities 
or even in achieving optimised pharmacokinetic profiles. Thus 
the practical importance of the concept of molecular similarity 
has grown dramatically in recent years. The predominant users 
are pharmaceutical companies, employing similarity methods 
in a wide range of applications e.g. virtual screening, estimation 
of absorption, distribution, metabolism, excretion and toxicity 
(ADME/Tox) and prediction of physicochemical properties 
(solubility, partitioning etc.). In this perspective, we discuss the 
representation of molecular structure (descriptors), methods 
of comparing structures and how these relate to measured 
properties. This leads to the concept of molecular similarity, 
its various definitions and uses and how these have evolved 
in recent years. Here, we wish to evaluate and in some cases 

challenge accepted views and uses of molecular similarity. 
Molecular similarity, as a paradigm, contains many implicit and 
explicit assumptions in particular with respect to the prediction 
of the binding and efficacy of molecules at biological receptors. 
The fundamental observation is that molecular similarity has 
a context which both defines and limits its use. The key issues 
of solvation effects, heterogeneity of binding sites and the 
fundamental problem of the form of similarity measure to use 
are addressed.

1. Introduction
Many “rational” drug design efforts are based on a principle 
which states that structurally similar compounds are more likely 
to exhibit similar properties.1–3 Indeed, the observation that 
common substructural fragments lead to similar biological acti-
vities can be quantified from database analysis.4,5 By extension 
from the molecular graph to molecular properties, this leads to 
a concept; molecular similarity, which is a term widely used in 
the chemical literature.1,6 Similarity methods have found particu-
lar favour in the pharmaceutical industry.7–9 Indeed, medicinal 
chemistry relies heavily on the concept of bioisosterism in which 
similar substructures may be interchanged whilst maintaining 
some degree of activity.4,10

Reasons for the increasing popularity of similarity based 
methods include technological advances in high throughput 
screening and synthesis which have taken place over the last 
decade and resulted in the necessary application of computer 
based methods for compound selection and evaluation to a 
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al.,18 Gillet et al.19 and Bajorath,20 a good critique, particularly 
of the misuse of similarity measures is given by Nikolova 
and Jaworska.21 A justification for the large number of mole-
cular similarity methods is given by Sheridan and Kearsley.7 
Bajorath discusses the role of similarity in the integration of 
in silico and in vitro screening,22 while Johnson et al.23 attempts 
to characterize similarity methods (at least those known at that 
time). Some caveats of molecular similarity such as different 
mechanisms of action and target-dependent similarity are dis-
cussed by Kubinyi.24 Finally the reader is referred to Tversky,25 
who describes early approaches to similarity in psychological 
testing which have been adopted by later researchers to describe 
similarity in molecules. Of interest here is that similarity assess-
ments are influenced by ‘context, perspective, choice alterna-
tives and expertise’.26 The choice of features, transformations 
and structural descriptions to describe entities (molecules in our 
case) will govern the predictions made by similarity models as 
much as do the model’s mechanisms for comparing and integrat-
ing these representations.

The fundamental observation that we can derive from these 
facts is that similarity has a context. Two vials of a yellow com-
pound may be very similar in colour (absorption spectrum) 
but wildly different in biological activity. How far the context 
of a particular similarity argument can be taken (the ‘neigh-
bourhood effect’) also depends on the discontinuities found in 
receptor–ligand interactions; clearly, the similarities studied are 
seldom linear and often have major discontinuities.

A brief  overview of approaches to molecular similarity is 
given in the second part of this perspective, the emphasis being 
on representation of molecules in chemical space.

From Fig. 1, it is obvious that there exists a great deal of infor-
mation about both the methods and applications of molecular 
similarity. Now, as the discipline matures, it is timely to evaluate 
methods thoroughly. This could be approached by evaluating 
identical data sets using different methods. Unfortunately, diffe-
rent data sets or a small number (or even single) data sets are 
often used in the evaluation of (particularly) new algorithms, 
so performance is not directly comparable. In the best interests 
of researchers in this area, in order to make results comparable, 
it would be helpful to agree on some standard data sets for the 
prediction of different target properties. Indeed, it has been 
suggested that in order for a new method to be thoroughly 
tested, at least ten diverse sets should be used.7 One recent data-
set that falls into this category was published by Hert et al..27 
Additionally, because direct comparison of performance is diffi-
cult, a different route can be explored in which the underlying 
assumptions of molecular similarity methods are examined. 
Corroborating evidence, ideally based on mechanism of action, 
can then be sought in the literature.

An important point is that to accurately define similarity on 
the basis of ligands alone is impossible (or futile) as the presence 
of external determinants or perturbations of the binding mode 
(and indeed e.g. diffusion rates, entropic contributions, desolva-
tion, multiple binding modes and pharmacodynamics) of  the 
ligand interaction with the receptor are (conveniently for many 
applications) unknown. In particular, the use of single valued 
biological measures (e.g IC50 or Ki) is often a gross approxima-
tion of the ligand binding event being studied; dose response 
curves are hardly ever collinear with different pharmacody-
namics and Ki values are often mixed with different displaced 
ligands being used in the same dataset. We will also discuss the 
desolvation energy and its possible problems for ligand based 
similarity. Also, the importance of local similarity models 
(island models) and the problems of linear, one-model QSAR 
approaches are examined.

Some approaches, such as comparative molecular field ana-
lysis28 (CoMFA) or quantum molecular similarity29,30 require 
alignment of molecules, which is difficult to perform in cases 
of molecules with substantially different structures. For this 
reason, there have recently been developed descriptors which 

much greater degree than before. In tandem, computer power 
has dramatically increased, enabling similarity applications to 
be performed on very large databases of molecules. Driving 
the introduction of these new applications is the desire to find 
patentable, more suitable, lead compounds as well as reducing 
the high failure rates of compounds in the drug discovery and 
development pipeline.11 Fast, early and reliable prediction of 
suitable/unsuitable candidate structures is crucial.

Nonetheless, there are also natural limits of  molecular 
similarity methods. As soon as the amount of information one 
possesses about one particular problem increases (e.g. about a 
receptor), the advantage of molecular similarity methods, that 
no external knowledge is necessary, eventually becomes a limit-
ing factor, since taking advantage of this additional knowledge 
may suggest an alternative approach such as e.g. ligand protein 
docking. As a general rule, the molecular similarity concept is 
most often applied when knowledge of the system is sparse.

Also, as a result of  negative public opinion with respect to 
animal testing, in silico methods are seen as one way to reduce 
in vivo testing. An additional driver is legislation, particularly 
in Europe where home and personal care products in the 
European Union will not, starting from 2009,12 be tested on 
animals. Companies will then have to rely to a greater extent 
on their in-house compound libraries already tested for safety 
and may apply molecular similarity methods13 in order to find 
compounds possessing the desired safety profiles. This of course 
raises the spectre of untested toxic synergistic effects occurring 
in novel formulations of known compounds. Computer model-
ling of such pharmacodynamic effects is at a very early stage 
and molecular similarity will probably have a role to play in 
evaluating risk.14

To illustrate the steady growth of this area over the last two 
decades, the number of publications indexed by the Web of 
Knowledge15 containing “molecular similarity” in the title or in 
either the title, abstract or keywords is shown in Fig. 1. Most re-
searchers will be aware that the absolute number of publications 
using or citing molecular similarity methods is growing steadily. 
In addition it is interesting to observe that this field is maturing 
to become an “established” modus operandi. The ratio of publi-
cations containing molecular similarity in the title, abstract or 
keywords to the number of publications containing the words 
only in the title is expanding, with the ratio being 1 in the years 
until 1990 to about 4 in 2003, reflecting more applications of 
similarity based methods compared to method development.

Fig. 1 Number of publications indexed by Web of Knowledge per 
year which contain “molecular similarity” in the title (black) or in title, 
abstract or keywords (grey).

Molecular similarity is a dynamic and evolving area of 
research and has been regularly reviewed. Johnson and 
Maggiora1 and Dean6 wrote comprehensive books in this area. 
Recently, books by Leach and Gillet16 and Gasteiger17 have in-
cluded sections on molecular similarity. Recent general reviews 
of molecular similarity are given by Willett et al.,13 Walters et 
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by the environment within which it is perceived (or computed). 
Chapters 4 and 5 discuss two possible pitfalls with similarity 
calculations: that desolvation effects are often not additive in 
a simple fashion and are generally neglected (and electrostatic 
complementarity is overemphasized) and that linear methods 
are not capable of modelling a relationship between descriptors 
and activity if  the underlying activity space is rugged. Recent 
developments in descriptor development are discussed in chap-
ter 6 while chapter 7 deals with implicit properties of binary 
representations of molecules. Applications of machine learning 
methods in similarity calculations are given in chapter 8, before 
we conclude and give an outlook in chapter 9.

2. Descriptors for molecular similarity calculations
A very large number of descriptors have been developed that can 
be used in similarity calculations. They are typically designed 
to provide a molecular description that is transferable, in an 
information-preserving representation, to an abstract descrip-
tor space.

Descriptors can be broken down into those which are derived 
from the molecular graph, those which depend on molecular 
shape (conformation) and those which in addition require calcu-
lation of the molecular wavefunction. Added to this are descrip-
tors which describe modifications of the molecular structure 
(e.g. ionisation, pKa) or derivations of surrogate experimental 
measurements (e.g. log P).

One-dimensional property descriptions assign only one 
number to the molecule. A number is usually derived from com-
puted physicochemical properties (e.g. polarisability, volume, 
molecular weight). Since no geometrical information is con-
tained in the descriptor (e.g. in which conformation a molecule 
would interact with a receptor), they are often employed for the 
prediction of physical properties or as a more general property 
(such as miscibility) that can be associated with properties requ-
ired for receptor binding. Examples using such descriptors are 
clustering of compound databases54 and database comparisons 
(distinguishing between drugs/non-drugs [non-drugs, an inter-
esting discussion in itself]48,55–57). It should be noted that, in prac-
tice, one commonly assigns a large number of one-dimensional 
descriptors for similarity calculations because the relevant pro-

Fig. 2 Illustration of neighbourhood behaviour which shows the rela-
tionship between the change in biological activity for pairs of a series of 
compounds plotted against the change in the descriptor for these pairs 
of compounds. The ideal behaviour would result in the lower triangle of 
the plot being occupied, with the most favourable outcome being that 
small changes in descriptor space are related to small changes in biologi-
cal response (the typical medicinal chemistry paradigm). Small or large 
changes in biological response with large changes in descriptor space 
are also a common feature of such analyses. However, an unsuitable 
descriptor should not have the property that a large change in biological 
response results from small changes in the descriptor. 

attempt to circumvent alignment.31–33 Some of these descriptors 
and analysis methods possess the property of back-projectability 
of features from descriptor space to geometrical space. Thus, e.g. 
it is possible to generate human-understandable models (e.g. “a 
hydrogen acceptor 7 Å apart from a hydrogen donor is crucial”) 
and also to optimise structures according to the model.

Generating descriptors has a long history34–36 for molecules 
and is often the first step in molecular similarity methods. 
A distance measure of molecular representations in ‘chemical’ 
space is a required second step. This is often performed using 
association, correlation or distance coefficients which are based 
on the presence/absence of binary representations of features 
in the molecule (e.g. molecular substructures). The Jaccard 
coefficient37 (also known as the Tanimoto coefficient) is the 
most widely used in practice. This coefficient of similarity was 
originally introduced in 1908 to measure the similarity of popu-
lations of biosystems and was later applied to the calculation 
of molecular similarity. Several dozen similarity coefficients of 
this type are known.13,38,39 Over the last few years it has emerged 
that binary representations of molecules in combination with 
similarity coefficients possess some implicit properties which 
skew the results of  similarity searches and may introduce un-
intentional weighting with respect to e.g. size.40,41 Users of these 
algorithms should be aware of implicit and underlying tenden-
cies of binary bitstrings as well as similarity coefficients, and 
this is discussed later. In particular, these methods will often find 
similarity in common substructural features which may not be 
reflected in how the receptor actually recognises the molecules.42 
Small changes in structure can result in small changes in finger-
print similarity but large changes in molecular properties, or 
how a receptor perceives the ligand. Patterson discusses this 
in great detail in his well-known paper on neighbourhood beha-
viour,2 the essence of which is also illustrated in Fig. 2. Indeed, 
the question of how similar molecules have to be to display 
neighborhood behaviour is probably dependant on the property 
(often biological activity) in question and in particular on the 
(often assumed) linear behaviour of the relationship between 
the descriptor and biological activity (and on the variation of 
the activity itself  being a continuous free energy relationship). 
Martin’s study3,42 demonstrates that compound libraries which 
commonly contain series of analogues which are designed to act 
at a particular receptor (as is found in drug discovery programs) 
will indeed have a higher proportion of active neighbours (com-
pounds computed to be similar); obviously they will often find 
their own analogous series or molecules synthesised specifically 
to act at that receptor. This skews results for evaluation of vir-
tual screening experiments. This study suggests that the real ef-
ficiency of neighbourhood based virtual screening (at least using 
Daylight fingerprints with a Tanimoto measure of similarity) is 
nearer 30% and indeed 5–10 similar compounds to each probe 
molecule need to be tested to have a high probability of finding 
actives. The screening results are better than random selection; 
however, this is a particularly important study if  we are not to 
fool ourselves into believing better statistics due to unfortunate 
experimental design. Also, it is clear that the performance mea-
surement of these methods is critically dependant on the testing 
methods and molecules used in the dataset and also of the ques-
tions that are being asked. It is easy to skew these results to give 
a favourable outcome e.g. by selecting a set of structures applied 
to which the algorithm gives best results. Similarity is, after all,43 
a ‘fuzzy’ concept.

As in other areas of data analysis, machine learning appro-
aches have been applied extensively to the field of molecular 
similarity. Among others, ID3,44 linear learning machine,45 non-
linear mapping,46,47 support vector machines (SVMs),48 binary 
kernel classification49,50 and the Bayesian classifier.43,51–53

We shall give an overview of molecular descriptors used 
in similarity calculations in chapter 2, followed by a criticism 
of one of the important aspects of similarity calculations in 
chapter 3: that similarity possesses a context; it is determined 
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perty is in most cases either unknown or can only be represented 
as a combination of different one-dimensional properties.

One-dimensional linear representations attempt to represent 
the molecule as a linear string or tree where nodes represent 
atoms (or groups of atoms). This can be compared to the repre-
sentation of proteins using one-dimensional sequences of amino 
acids. To compare molecules, algorithms similar to protein 
sequence alignment can be applied to compare two molecules.58 
An overview of methods to derive linear molecular descriptors 
is given by Baumann.59

Topological indices and other graph-based descriptors consti-
tute the next group of descriptors. Topological indices are inte-
ger or real-valued numbers that are derived from the connectivity 
matrix and may contain additional property information about 
the molecule. They are generally divided into three generations 
of indices. The first generation, such as the Wiener index, are de-
rived from integer graph properties and are themselves integers. 
Second generation indices, such as the molecular connectivity 
indices, are real numbers derived from integer graph properties 
whereas indices of the third generation are real valued numbers 
derived from real valued graph properties.60,61 As yet, there are 
hardly any applications known using third-generation topologi-
cal indices.62 Several hundred alternative topological descriptors 
have been published.63–65 One important aspect of topological 
indices is that they are derived solely from the connectivity 
matrix of a molecule and thus do not consider conformational 
variability and three-dimensional structure. For a recent review 
on topological indices, see Balaban66 and Estrada and Uriarte.62 
Kier and Hall67 extended topological descriptors to include 
electronic and valence state information in their “electrotopo-
logical” descriptors, an approach that has later been extended 
to “E-state fields”.68

Another group of descriptors are fragment or substructure 
based descriptors. Maximum common substructure (MCS) 
searches are among the earliest substructure searching algo-
rithms used (see e.g. Cone et al.,69 although the concept was 
already used much earlier). They are often employed to find 
substructures ‘similar’ to a template substructure e.g. to find all 
those structures containing an ethylamine fragment. This would 
find e.g. piperazines and piperidines as well as ethylamines. One 
has to be aware that substructure searching implies perfect 
matching of molecular connectivities and atom types (instead 
of using some kind of fuzzy concept to define actual similari-
ties). These searches tend to be time-consuming due to the NP-
complete (no NP-complete problem can be solved in polynomial 
time) nature of the problem which in the worst scenario becomes 
an exhaustive search. Developments in substructure searching 
can be found in ref. 70. Substructural analysis (comparing the 
presence or absence of substructural fragments to a biological 
activity) in a simple form is often dubbed Free–Wilson analysis 
as Free and Wilson published one of the early applications of 
this type.71,72 This is still an active area of research.19,73 Ghose 
developed counts of a selected set of  110 fragments based on 
carbon, hydrogen, oxygen, nitrogen, sulfur and halogens as de-
scriptors74 which were initially applied to the prediction of log 
P. Rarey and Dixon75 represent molecules as one-dimensional, 
potentially branched, sequences designated “feature trees”. 
Other examples for fragment-based descriptors use reduced 
graphs,70,76 “molecular tree” fingerprints77,78 or related “atom 
environments”.51,52,79,80 “Mini fingerprints” also contain bits 
which denote the presence or absence of fragments.81–83 For 
both “molecular tree” fingerprints and atom environments, 
fragments spanning two bonds from a central atom (five atoms 
in diameter) were found to be most effective in similarity search-
ing51 and QSAR studies.78

Descriptors derived from combinations of other descrip-
tors, using correlation or principal components methods are 
also popular. BCUT descriptors84,85 derived by diagonalising 
a matrix of atom-based properties to generate a set of new de-
correlated descriptors (based on the smallest eigenvalues) have 

found use particularly in compound selection where diversity 
(an interesting concept in itself: similarity can at least be quanti-
fied, ‘diversity’ is as big as you want to make it!) in compound 
library design is desired.

Another class of field-based descriptors are derived from the 
effects of a test probe at a distance. This could be e.g. a positive 
charge, a water molecule or a methyl probe. Generally, addi-
tional properties such as atom centred partial charges have to be 
pre-computed before calculation of the field effect. This group 
of descriptors differs fundamentally from the previous group in 
that they use three-dimensional information of a molecule for 
their derivation. Because of the number of data points (often 
termed “grid points” based on a regular grid) that are nece-
ssary for a sensible resolution, they are often computationally 
more demanding than two-dimensional methods. Field-based 
descriptors generally require alignment of the molecules to be 
compared. This is trivial only in the case of compound ana-
logues and of course makes the assumption of near identical 
competitive binding. Many different methods have been deve-
loped in this area with the broad separation being between 
quantum-mechanical methods and non-quantum mechani-
cal methods. Quantum similarity was introduced in the early 
1980’s.29 Hodgkin and Richards86 later introduced a related 
index that took into account not only electron distribution but 
also electron density. Walker et al.87 and Good et al.88,89 replaced 
the grid approach with a Gaussian approximation leading to 
significant increases in performance. Furthermore, this solved 
problems with local minima while performing molecular align-
ments. The Gaussian representation has later been generalized 
to describe molecular shape.90 For a review on quantum similar-
ity, see Carbo-Dorca and Besalu,30 and latest developments see 
refs. 91–93. For a basic introduction to the subject see ref. 94 
and for a discussion of the significance of QM methods in simi-
larity (particularly atoms in molecules theory) see Nikolova and 
Jaworska21 and Boon et al..93 Quantum mechanical methods 
of similarity hold the promise of a better representation of 
structure and importantly, perturbations in molecular proper-
ties that can only be determined by evaluating the response of 
the wavefunction. Increases in computer power with speedup 
due to algorithm developments are making these methods more 
attractive in principle, although there are very few large-scale 
applications yet.

Methods based on grid based descriptors, many of which owe 
their inspiration to Goodford’s work in field based methods95 in 
combination with a robust statistical method for variable selec-
tion (partial least squares, PLS),96 were introduced in the late 
1980’s with the comparative molecular field method, CoMFA.28 
This method was also the basis of  Klebe et al.’s comparative 
molecular similarity analysis (CoMSIA) approach.97,98

Another group of descriptors makes use of the concept of 
the receptor and ligand as a ‘lock and key’ in which common 
interacting groups are found at similar distances apart. This is 
the pharmacophore hypothesis99 and in many applications it in-
volves identifying key (similar) functional groups and their con-
formationally dependant inter-fragment distance ranges. These 
methods do not rely on molecular alignment; instead, relative 
internal distances of the molecule are used (and, indeed, one 
of their advantages is that no alignment is necessary, although 
it would often be assumed that alignment of key interaction 
points would occur in the ligand/receptor interaction). They are 
often referred to as multiple-point-pharmacophores: two-point 
pharmacophores100,101 (2PP), which are known as atom pairs and 
represent all possible pairs of atoms in the molecule, three-point 
pharmacophores102–107 (3PP), which allow for a more detailed 
representation of interatomic distances, and four-point phar-
macophores108,109 (4PP), which are able to distinguish between 
geometric isomers. Four-point pharmacophores are discussed 
later.

The surface-based group of descriptors focuses on the com-
monly accepted assumption that ligand–receptor binding is 
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mediated by the molecular surface, e.g. by the complex shape 
of the van der Waals surface. Clark discusses the applicability 
of surface-based descriptors as a matter of principle as well as 
possibilities to calculate molecular surface properties.110 Some 
examples of the utility of surface based descriptors follow. 
Gaillard et al.111 devised a method to describe molecular lipo-
philicity potential and validated it by predicting log P values. 
Stanton and Jurs112 introduced the concept of “charged par-
tial surface area structural descriptors”. Jain et al.’s Compass 
method113 takes several molecules and several conformations 
into account and requires a user-defined interacting pharma-
cophore guess. This approach has also been used for selecting 
library subsets in its extension called Icepick,114 where several 
conformations of the molecules to be compared are calculated 
and the three-dimensional structures are docked into each other. 
Jain also introduced the concept of “morphological similar-
ity”115 which is defined as a Gaussian function of the differences 
in molecular surface distances of two molecules at weighted 
observation points on a uniform grid. Compared to field-based 
methods, this method has the advantage that no alignment is 
required. A novel method for classifying similarity of mole-
cules is performed by using hashkeys of the molecular surface, 
compared to a panel of  reference compounds.116 Applied to 
several data sets, the description was found to capture enough 
information for the prediction of ADME properties and target 
binding. Hash codes are generally used for structure storage 
and retrieval117 and here, they are applied to structure–activity 
relationships.

Affinity-fingerprint based descriptors compare the comple-
mentarity of a ligand to a panel of reference receptors and score 
each ligand by docking it into each receptor. The resulting affi-
nity vector can then be used to create a similarity index for the 
group of ligands. This approach is computationally demanding, 
because every ligand molecule has to be docked against every 
reference receptor molecule. On the other hand, the “expertise 
of the receptor” is crucial for finding ligands in vivo, so that 
more meaningful results could potentially be derived from this 
approach. In vitro fingerprints were first introduced by Kauvar 
et al.118 and shortly afterwards followed by in their in silico 
counterparts.119,120 The latter were, for example, employed in 
library design.121 For a recent review see Briem and Lessel.122

The group of spectra-derived descriptors uses a “natural” 
way to derive a one-dimensional representation of a molecule. 
X-Ray and electron diffraction as well as infrared spectra have 
been used in this sense. The resulting spectra have to be mapped 
onto descriptor space, e.g. by calculating its zero crossings. The 
earliest work in this area was done by Soltzberg and Wilkins,123 
who used molecular transforms to calculate the diffraction 
pattern from an X-ray derived three-dimensional structure. 
Electron diffraction was also used in the 3D-MoRSE (molecule 
representation of structures based on electron diffraction) app-
roach.124 The first descriptor calculated from the vibrational 
spectra of molecules is the EVA descriptor.125 Here, fundamen-
tal frequencies of the vibrational spectrum are calculated and 
used for the comparison of molecules. A different approach126 
defines fuzzy peak areas to derive molecular features from an 
infrared spectrum, followed by principal components analysis. 
Although spectra are a “natural” way to convert a molecule into 
a one-dimensional representation, small changes often intro-
duce major changes in the spectrum (e.g. bond lengths) and the 
representation in descriptor space. These changes often make it 
difficult to use this approach consistently as a similarity index.

3. The receptor is king
Molecular similarity is a concept often used to estimate proper-
ties in biological systems or activity at receptors. A wide range of 
properties can be predicted such as physicochemical properties, 
which by their nature are often in a homogenous medium79,127 or 
NMR128,129 or IR130 spectra. However, of particular importance 
for the pharmaceutical industry are properties like absorption, 

distribution, metabolism, excretion and toxicity (ADME/
Tox)131,132 and bioactivity.8,51,122,133 These depend to a great extent 
on perturbations introduced by specific interactions between 
ligand and receptor (or transporter molecule, as in the case of 
active transport in absorption, etc.). Many of the ligand-induced 
perturbations (as well as more often than not the target struc-
tures themselves) are unknown and the interactions can vary in 
a non-linear fashion between ligands. For example, while in a 
certain range a more polar oxygen–amine hydrogen bond may 
increase affinity to the target due to more stable hydrogen bond-
ing, a change to another donor–acceptor pair may favour solva-
tion in the medium and therefore weaken the interaction.

The similarity problem itself  determines the performance 
of the representation of the structure in chemical space. 
A “sensible” descriptor places two molecules apart from each 
other in descriptor space at a distance related to the differences 
in their activities or physicochemical properties. For different 
applications, different features of the molecules turn out to be 
important. Thus descriptors and the measure or calculation of 
similarity have to be defined on a case by case basis. Because 
of the discontinuous nature of ligand–protein interactions, 
similarity is a local effect with a ‘distance range’ within which 
it applies.

To illustrate the importance of an external reference, we 
may consider bioisosteric replacement of functional groups. If  
an ether linker (–O–) is replaced by an amine group (–NH–), 
broadly the same lipophilicity is retained. But if  this group is 
involved in hydrogen bonding, depending on whether donor or 
acceptor properties are present in the receptor, several orders 
of magnitude of binding can be gained or lost by this replace-
ment.134 Depending on whether the external reference referred 
to is lipophilicity or hydrogen bonding capabilities, similarity or 
bioisostericity should therefore be computed differently.

Also, the magnitude or range of similarity always depends on 
the nature of the problem. For example, steroids exhibit totally 
different effects on the human body, where they can act as male 
sex hormones, female sex hormones, anabolics etc..134,135 This 
different behaviour is mediated by very small changes to the core 
steroid structure and their complementarity to different nuclear 
hormone receptors. Thus, as overall similarity of steroids is very 
high by e.g. fingerprint based Tanimoto similarity indices, only 
small, local dissimilarities are responsible for different activities. 
In situations like this, an understanding of the mechanism of 
interaction and its influence on activity would be a better ap-
proach than a global similarity measure.

To conclude, molecular similarity is always a property that 
depends on an external criterion which defines similarity (a re-
ceptor, a physicochemical property). Similarity is not a property 
of the molecule itself, molecules are perceived as being similar 
(or different) by external ‘judges’ that are guided by natural 
laws (receptors, detectors of physicochemical properties). The 
magnitude of similarity that is required for similar activity also 
depends on the external reference, as illustrated by steroids, 
which are overall very similar but nonetheless possess very dif-
ferent properties.135 There are no absolute measures of molecu-
lar similarity and each case requires the selection of appropriate 
properties and classification methods.

4. Omitting important features: Free energy, 
enthalpy and entropic descriptions for binding need 
desolvation terms
Many of the most interesting similarity comparisons are between 
molecules that could potentially bind to a biological receptor. If  
a ligand finds its way to the appropriate target, it is not just the 
non-covalent interaction of two molecules which become one 
more or less stably bound aggregate that determines biological 
effects. Before recognition and binding of the ligand occurs, 
both binding site and ligand have to be stripped of their solvent 
shells, some water molecules may remain and form bridging 
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Fig. 3 Enthalpic and entropic contributions to ligand (L)–receptor (R) binding. It is commonly assumed that non-polar surface areas contribute to 
stability of the ligand–receptor complex through desolvation energies while polar surface areas are important for selectivity.

hydrogen bonds, ions may be necessary for binding, the receptor 
may change shape (“induced fit”) and rotatable bonds in the 
ligand and receptor might have to be arranged before finally the 
ligand is said to be “bound” to the receptor. A detailed summary 
of those steps is given in Fig. 3. The pharmacodynamics (on–off) 
rates of the ligand are also of importance therefore the stability 
of the complex strongly influences the bioactivity observed.

It is commonly accepted that the energy gained during ligand–
receptor complex formation by removing water from lipophilic 
surfaces is largely responsible for overall stability of the complex 
formed.136 We commonly observe that in general, larger ligands 
have greater affinities (and medicinal chemistry often chases 
activity by increasing lipophilicity, while unfortunately reducing 
the solubility and pharmacokinetic profiles). This tends to allow 
more hydrogen bonding within the solvent (water), thus squeez-
ing out the ligand from solvent onto the more hydrophobic 
receptor surface. In contrast, hydrophilic (charged or polar) 
areas are seen as having adverse effects on overall stability of 
the complex, because the surrounding arrangement of water 
molecules can interrupt the ligand/protein interaction by solvat-
ing the ligand and protein. Hydrophilic contacts (in particular 
hydrogen-bonding interactions) are thought to possess discrimi-
natory properties between similar binding pockets, thus contri-
buting to selectivity.137,138 In many successfully applied molecular 
similarity methods, such as comparative molecular field analysis 
(CoMFA, GRID), steric and electrostatic fields are employed. 
Steric effects (where dispersion is ignored) increase with the 
proximity of interacting groups. Electrostatic effects increase 
with the proximity of like charged fragments. However, this is 
an approximation (sometimes useful) of the true solvated situ-
ation. As we outline in the following paragraphs, electrostatic 
fields may not always be appropriate for generating descriptors 
for molecular similarity calculations and this observation opens 
up possibilities for improvements in this area.

Examination of the literature does not give a conclusive 
account of the relative importance of steric and electrostatic 
contributions to the predictivity of comparative molecular field 
analysis (CoMFA)28 models. This may also be due to the diffe-
rent nature of problems the method is applied to. An overview 
of the relative importance of both computed fields in the litera-
ture is given in Table 1.

In order to examine predictivity using electrostatic informa-
tion, Chau and Dean studied electrostatic complementarity 
of 34 ligand–receptor complexes.139 Calculating correlation co-
efficients of van der Waals surface points, they found significant 
correlation in all but eight cases, but with a negative slope. This 

indicates that electrostatic complementarity is far from being 
sufficient for binding, probably due to desolvation effects of 
both receptor and ligand. Indeed, there is no reason to believe 
that electrostatics should have only a positive or negative contri-
bution. In a set of molecules, individual sites can in fact be cor-
related in terms of their electrostatic changes (e.g. partial charge 
on a fragment can increase across a series) but seemingly cha-
otic in their contribution to binding (binding goes up or down 
irrespective of charge). Many methods, such as CoMFA, rely on 
discovering relationships (in this case linear, using PLS) between 
molecular property and binding affinity. But what happens if  
the property increases then decreases and affinity increases? The 
property is discarded in the model. Indeed, in docking studies, 
it was found beneficial to include desolvation information that 
was dependent on the pairwise fragment interactions between 
hydrogen bonding groups. Affinity between fragments in the 
ligand and protein can be attractive or repulsive depending 
on the pair involved. This implies that electrostatics alone can 
often be insufficient to account for changes in affinity. The per-
turbations introduced by the receptor on the ligand in terms of 
changes in desolvation energy can be fundamental to molecular 
recognition.140

Klebe and Abraham141 discuss the influence of enthalpic 
and entropic factors on binding. Building CoMFA models for 
renin inhibitors, they conclude that only binding enthalpies and 
not free energies can be predicted from the models. Since the 
difference between binding enthalpy and binding free energy 
is explained by the entropy term (DG° = DH° − TDS°), this is 
in agreement with the importance of the desolvation energy 
caused by entropy changes of the solvent and ligand upon bind-
ing. In the context of desolvation enthalpies and entropies and 
ligand entropies, the “totally unexpected”141 observations are 
explained.

Where transport properties like partitioning are impor-
tant for activity, the use of steric and electrostatic field based 
methods may not be as useful as single parameters like log P 
which in these instances may have more predictive value. This 
is understandable, since log P introduces information about the 
hydrophobic character of a molecule, which is not captured by 
both steric and electrostatic fields. Still, hydrophobic parts of the 
molecule possess important information for overall affinity since 
their binding contribution is often positive (see Fig. 3). Soon 
after publication of CoMFA,28 a third, hydrophobic field was 
introduced.142 Very little advantage (in this context) compared to 
the original method has been found, which may be attributable 
to a number of reasons. Some of the information (variation) in 
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the hydrophobic field may already implicitly be present in steric 
and electrostatic fields. Also, variable selection using partial 
least squares penalizes the increased number of variables. More 
likely, it seems that similar problems from heterogeneity in the 
local binding contributions to those found with electrostatics are 
introducing non-linear non progressive interactions that cannot 
be handled by a linear least squares method.

However, one advantage of the PLS coefficients resulting 
from hydrophobic fields is that they are easy to interpret143 and 
are very useful in identifying similar substituents having similar 
properties when observed in the context of the grid computa-
tions and some later studies have suggested that the cross-
validated correlation coefficients obtained from these fields are 
superior to those from steric and electrostatic fields, e.g. as is 
reported for multidrug resistance reversal.144

The recently published HINT (hydrophobic interaction) force 
field attempts to include hydrophobic information, derived from 
log P data.143 Other molecular descriptors, such as GRIND31 or 
CoMSIA97,98 also make use of hydrophobic fields, as does mole-
cular lipophilic potential (MLP).145

To summarize, most commonly employed molecular simi-
larity methods, such as in the original CoMFA,28 in which 
ligands are compared to each other, often appear to work well 
without taking any of the effects listed in Fig. 3 into account. 
However, electrostatic fields alone conceptually do not capture 
relevant information because they neglect desolvation energies. 
Not considering solvation and desolvation effects may lead to 
inappropriately fitted models, which, even if  they show some 
correlation with experimental data, can in the worst case only be 
seen as random fits. In ligand–protein binding, the enthalpic and 
entropic influence of solvation and desolvation is crucial for the 
assessment of molecular similarity. Better understanding of this 
phenomenon and the use of statistical methods that could take 
this into account could offer great benefits and improve methods 
like CoMFA considerably.

Reviews of forces influencing receptor–ligand formation 
are given by Bohm and Klebe,146 Gohlke and Klebe147 and 
Brooijmans and Kuntz.136

5. Local similarity requires non-linear models. Or: 
Why linear regression techniques are not the method 
of choice
It is the first step of molecular similarity methods to represent 
molecules in “chemical space”. Feature selection is the (optio-
nal) second step; comparison of structures, either one-on-one or 
by comparing each library structure to some kind of consensus 
model from multiple query structures, is the mandatory last step. 
Information from multiple molecules may be combined in the 
model generation step in order to improve predictive capabilities. 
As a necessary condition, statistical properties of the derived 
model have to be satisfactory; as an advantage, the prediction 
rules derived may (ideally) be understandable by humans.

There have been many analyses using e.g. feature selection 
followed by multiple linear regression using computed proper-
ties to determine some bioactivity of interest. Using force fields 
to calculate individual contributions to the binding free energy 

for molecular features, the COMBINE analysis method148 uses 
interaction energies of individual groups to predict interaction 
free energies in a linearly-additive fashion. The underlying 
assumption is that there is some linear and additive relationship 
between the contributions each of the properties makes to bio-
activity. These calculations can be carried out on the molecular 
graph without the availability of 3D information or can also 
include properties derived from the 3D structure. Given that 
there are often local neighbourhoods of similar activities that 
are discontinuous, may these regression methods simply be con-
necting neighbourhoods (means of clusters of similar active 
molecules)? The criticism of linear regression in QSAR studies 
has already found consideration in recent research. Multiple 
linear regression and smoothed splines have been compared, 
and the non-linear smoothed splines have been found to be 
superior.149 One has to be careful not to draw too far-reach-
ing conclusions because a single, and relatively small, dataset 
was used in the study. Also local linear and non-linear models, 
which are able to take different modes of action into account, 
were examined by Ren.150 Locally weighted regression scatter 
plot smoothing (LOESS), multivariate adaptive regression 
splines (MARS), neural networks (NN), and projection pursuit 
regression (PPR) were applied in this case to toxicity prediction. 
Additional progress in tackling this problem can be seen in the 
Compass method113 which also employs a new type of neural 
network using surface points as descriptors.

In 3D studies using regression methods, alignment and the 
discontinuous properties of substitutions of key interacting 
groups can have a similar effect. Dissimilar structures may still 
exert the same effect on a receptor. Those examples of functional 
equivalence without structural similarity are well known.151 Lin-
ear models also reduce the binding model to a single binding site 
and to a single binding mode, an assumption that is often far 
from being true. Slight changes in molecular structure may cause 
a completely different binding mode, such as the binding mode 
of the DHFR inhibitor methotrexate, compared to the binding 
mode of the natural substrate.152 In this case, the binding mode 
was completely inverted following slight changes of molecular 
structure. To address one aspect of this, multimode ligand bind-
ing was implemented into CoMFA153 and appears to give better 
results than standard CoMFA.

Using 3D information, popular methods, such as CoMFA,28 
use data derived from a series of overlaid molecules to create 
a model. Often molecular alignment is performed in order to 
overlay substructures which are thought to have similar proper-
ties, placing corresponding interaction groups in neighbouring 
areas in space. Using 3D information thus has a price; in the 
absence of information on relative binding orientations, one has 
to be deduced or inferred. In this context, it is often better to 
overlay interaction points rather than structure; the overlay step 
is potentially the most difficult.154 Alignment of very dissimilar 
structures (different scaffolds) is not a trivial task. This is illus-
trated in Fig. 4 and Fig. 5. While alignment of two angiotensin 
converting enzyme inhibitors of very similar size is possible 
without problems (Fig. 4), alignment of two structures of dif-
ferent size, which still both show the inhibition of ACE in vivo, 
gives close to arbitrary alignment (Fig. 5).

Table 1 Importance of steric and electrostatic field components in applications of comparative molecular field analysis (CoMFA) [Cramer 1988].28 
Interestingly, electrostatic and steric effects are often seen to contribute (or not) in significantly varying degrees to CoMFA models (see chapter 4 for 
discussion)

Steric > Electrostatic Steric  Electrostatic Electrostatic > Steric

Selection of the most predictive conformation Alkylamides as inducers of human leukemia  Affinity of dyes for cellulose fiber215

 of adenosine A2A receptor agonists209  cell differentiation211

Dopamine D4 receptor antagonists210 SAR of antifungal pyrrole derivatives212

 Flavonoids binding at benzodiazepine site in
 GABAA receptors213

 Cytotoxicity of substituted acridines against
 HCT-8 cell line relative to mouse leukaemia
 L1210 cells214
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Fig. 4 Alignment of two inhibitors of angiotensin converting enzyme. 
Both molecules are of comparable size so alignment is, although still 
time consuming, feasible in an unambiguous manner.

Fig. 5 Alignment of two inhibitors of angiotensin converting enzyme 
of very different size. Alignment is in this case not feasible in an unam-
biguous manner. These results were obtained using a genetic algorithm 
(GASP) for alignment but this problem exists independent of the par-
ticular algorithm that is applied.

Fig. 6 Variations of a molecular property (here biological activity), 
depending on the positioning of the structures in property space. Linear 
regression, which may be appropriate in cases of physicochemical pro-
perties such as log P, is certainly not appropriate to model this relation-
ship between structure and activity. Methods based on clustering around 
activity neighbourhoods should be more robust.

One novel and interesting way to remove the structural 
overlay criteria is to have a set of  consistent ‘expert’ rules to 
provide a conformational and orientational overlay from which 
field-based analysis may be performed. This new approach, 
called ‘topomers’, after their description of topological shape, 
was taken by Andrews and Cramer33,155 and appears to be sur-
prisingly robust. Several datasets have been analysed and an 
additional advantage is that very large chemical libraries can 
be analysed quickly using a combinatorial approach to shape 
matching.

While it may be sensible to apply linear methods to the pre-
diction of physicochemical properties,112 there is conceptually 
a problem when applying linear regression to relationships 
between structure and biological activity (in the ligand–recep-
tor scenario). While a single linear model may be preferable to 
some researchers, it is not necessarily the case that such a model 
exists (in particular in the presence of multiple binding modes). 
If  multiple binding modes encompassed in a single linear model 
then a predictive outcome may only be due to binding contribu-
tions that stem from similar molecular features in both binding 
modes and there is no reason to assume that this assumption 
should be true in general.

This problem is illustrated in Fig. 6. Different structures are 
placed at different positions in chemical space (here illustrated 
using a one-dimensional descriptor axis). Bioactivity does not 
depend linearly on the position in descriptor space. Instead, 
local “activity islands” are encountered, which can only be 
modelled using non-linear models such as recursive partition-
ing. Regression through these local islands results in a modest 
regression coefficient and occasional outliers, a situation com-
monly found in analyses of this type. The removal of outliers 
(with various ‘reasonable’ excuses) is a common feature of many 
QSAR analyses.156–158

6. Recent developments in molecular descriptor 
generation
Molecules are compared in three steps: representation of mole-
cular structures in chemical space, feature selection (this step is 
optional) and comparison of structures. This section deals with 
recent developments of the first step, molecular representation 
in chemical space, which is also known as the generation of mole-
cular descriptors. A general overview of molecular descriptors is 
given by Todeschini and Consonni.36

A descriptor places two molecules in chemical space at a dis-
tance that describes their similarity (in this particular descriptor 
space). The ideal descriptor places two molecules at a distance 
that is proportional to their difference in bioactivity, physico-
chemical properties or any other property of the molecules. 
As two molecules may be perfectly similar with respect to one 
property (e.g. molecular weight) but completely different with 
respect to a second property (e.g. lipophilicity), it becomes clear 
that there cannot be one similarity measure and one descriptor 
that correlates with every molecular property at the same time. 
In different “similarities”, different features emerge as being im-
portant (and in our case, different bioactivities invariably require 
different descriptors).

New molecular descriptors

As described in the introduction, one major advantage of recent 
descriptors is their translational and rotational invariance. In 
addition, some of the more recent descriptors are back-project-
able, which means a feature that is found to be important can be 
projected back onto the molecules from which it was derived in 
some chemically meaningful way. However, the solvation effects, 
as discussed previously, apply in much the same way. These des-
criptors, although most often used in structure activity relation-
ships, can also be used in molecular similarity calculations. In 
the following, essentially proof-of-concept calculations on small 
datasets were presented by the authors and their application in 
the future will either prove their usefulness in practice, or not. 
Also, one should be aware that datasets containing rigid struc-
tures (such as the original proof of principle steroid CoMFA 
dataset) enable alignment of structures that is rarely possible on 
more common (and more flexible) datasets.

An illustration of back-projectability is given in Fig. 7 and 
Fig. 8. In Fig. 7 CoMFA28 was applied to 21 steroids from the 
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well-known steroid dataset.159 The steroids were aligned and 
using PLS areas in space which contribute favourably or unfa-
vourably to binding, either in a steric or electrostatic sense, are 
highlighted using colours. Thus, directed structural optimiza-
tion may be performed. It should be mentioned that the steroid 
dataset is particularly amenable to CoMFA due to the rigidity 
of the steroid core. In Fig. 8 features responsible for binding of 
a statin to 3-hydroxyl-3-methylglutaryl-Coenzyme A (HMG-
CoA) reductase were back-projected on the molecular surface. 
Features were selected using surface point environments, infor-
mation-gain feature selection and a naïve Bayesian classifier.53 
They correspond to experimentally determined binding fea-
tures160 and correctly identify the CoA binding pocket and the 
lipophilic moiety. This information about binding can be used 
to design novel active entities.

probes. Often, DRY, N1 and O probes are employed to consider 
hydrophobic interactions and hydrogen bond acceptor and 
hydrogen bond donor fields, respectively. The fields are simpli-
fied and autocorrelation descriptors of the field are calculated 
using binned distances of the fields. Only the highest products 
of molecular interaction energies are stored. Thus, information 
about less favourable sites is lost and it was found in practice 
that the maximum product does not correspond to a meaning-
ful feature in every case. At the same time, back-projectability is 
facilitated. Using a related program, ALMOND,161 descriptors 
can be back-projected in three-dimensional space. Using this 
approach, features responsible for steroid binding have been 
identified. Performance in a statistical sense is comparable to 
other methods, but with the added advantage that no alignment is 
necessary and that descriptors are easily interpretable. In one 
application, using GRID and GPCA, regions of the homo-
logous serine proteases thrombin, trypsin and factor Xa 
responsible for selectivity were identified.162 The findings were 
in agreement with experimental data. More recently, a shape 
description was implemented as an additional “probe” of the 
GRID program.163 Before the introduction of the shape descrip-
tion very similar descriptors were obtained for molecules with 
additional aliphatic chains since the resulting interaction fields 
were very weak (and virtually not present in the descriptor). The 
additional shape probe is able to capture those regions (which 
may cause steric repulsion and thus a huge difference in activity) 
and was shown to improve QSAR statistics.163

A related approach was presented by Stiefl et al.32,164 and 
named MaP (mapping property distributions of molecular 
surfaces). This algorithm first constructs equally spaced surface 
points on the molecular surface. Established methods such as 
MSMS165 and others have been found not to give equally spaced 
surface points so an implementation of the GEPOL algorithm166 
was used. In a second step, a probability distribution function 
was calculated. Because binning was performed to give discrete 
values, this in effect was a distance dependent count statistics. 
The approach differed from the GRIND descriptor in that it 
uses the molecular surface instead of equally spaced grid points. 
Additionally, categorical variables are used which are then 
binned in a distance-dependent fashion. In the original method, 
hydrophobic, hydrophilic, hydrogen bond donor and hydrogen 
bond acceptor surface points were used. When applied to a 
steroid data set and a set of eye irritating compounds, results are 
broadly comparable to other methods. For a set of  muscarinic 
compounds, a model could be developed despite high flexibility 
of the compounds.32 Again the advantage of translational and 
rotational invariance as well as back-projectability is seen.

The shape signatures method167 uses a ray-tracing approach 
to project a molecule in descriptor space. A ray is reflected 
inside of a molecule, or alternatively in the binding pocket of 
a receptor. Then, properties are assigned to each point where 
the ray is reflected by the surface. Histograms of the distance 
between reflections as the first dimension and the property at 
the point of reflection as the second dimension of the descrip-
tor are kept. These histograms can be compared using one of 
several methods. The histograms, counts of ray lengths between 
reflections, converge quickly with the number of reflections 
performed. In the order of 10 000 reflections is still needed, 
giving rise to computational costs of several minutes per mole-
cule (using P-III/450 machines). The authors present no real 
application, but preliminary studies using small systems (substi-
tuted bicyclic compounds) show intuitively sensible behaviour 
of the descriptor.

A descriptor similar to the start-end-vector method168 en-
codes the topological distance matrix using atom counts,169 but 
only encodes the shortest path between atoms that leads to a 
smaller computational overhead. A geometric extension of the 
distance matrix also takes three-dimensional information into 
account and is able to distinguish between different molecular 
conformations. Overall performance is compared to EVA125 and 

Fig. 8 Features identified as being responsible for binding of a statin 
to HMG-CoA reductase. Employed were interaction energies of sur-
face points which were encoded in a binary format, information-gain 
based feature selection and the naïve Bayesian classifier (MOLPRINT 
method). Features binding to the CoA site as well as to the flexible lipo-
philic pocket are correctly identified.

Fig. 7 Areas in space projected back on dihydrotestosterone which 
are favourable or unfavourable for binding with respect to steric effects 
(green/yellow) or where negative (blue) or positive (red) charges increase 
activity.

The first of  the recent descriptors possessing both trans-
lational and rotational invariance and back-projectability 
was published by Pastor et al.31 and called the GRIND (grid-
independent) descriptor. Molecular interaction fields (MIFs) 
are calculated at regularly spaced grid points using different 
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CoMFA28 and found to be slightly superior in test cases. This 
may be due to the fact that it considers essentially 2D-informa-
tion of the molecule which has often been found to be superior 
to completely 3-dimensional methods (probably due to the addi-
tional irrelevant data (noise) introduced when considering 3-D 
models of molecules).170 Translational and rotational invariance 
is found due to the fact that the connectivity table and only 
relative distance information is used for descriptor generation. 
Back-projectability is illustrated using examples from the steroid 
data set but generally found to be cumbersome.

Two complementary approaches are the SIFt (structural 
interaction fingerprint)171 and a method published by Putta et 
al..172 SI fingerprints are a novel method to describe interaction 
between ligand and receptor that is straightforward and in effect 
describes 3D interaction information in a one-dimensional bit 
string. First, all residues which interact with any of the ligands 
of a ligand library are identified. Then bitstrings are created rep-
resenting the interaction points of every ligand in the receptor 
pocket. The Tanimoto coefficient can then be used to compare 
interaction profiles. If  compared to binding modes calculated 
using PMF and Cscore (a consensus scoring function173), it is 
shown that in particular PMF and less so Cscore, are not able 
to distinguish between true binding modes and others. The SIFt 
approach can also be applied for virtual screening by docking 
ligands into the receptor and calculating interaction fingerprints. 
These fingerprints can be compared to high affinity ligands at 
the screening stage. This strategy outperforms Cscore and PMF 
in this application

The Putta et al. method172 has characteristics in common with 
SI fingerprints in that it attempts to identify features respon-
sible for binding. Since it only takes into account information 
from ligand molecules, no receptor information needs to be 
present. It needs alignment of molecules and sometimes even 
alignment of key features. Often the overall shape of the ligand 
is not important, but only subshapes of part of  the molecule. 
One approach to handle this problem is to calculate a small 
number of terminal points in the query molecule and a larger 
number of skeleton points in the target molecule.174 Then sub-
shape matching is possible using triangles inside the molecule. 
Promising preliminary studies are given orienting NAPAP and 
a benzamidine fragment, a thorough validation of the method 
is not yet available.

An explicit method for molecular alignment is presented 
by Kotani and Higashiura.175 The smaller of two molecules 
is superimposed on the larger molecule. Then, nearest atomic 
distances of each atom of the smaller molecule to any atom of 
the larger molecule are calculated. Almost comparable results 
to Meyer and Richards’176 and Good and Richards’89 approach 
are obtained with respect to molecular similarity, but the new 
method is several orders of magnitude faster.

Extensions of established algorithms: multiple point 
pharmacophores and multi-dimensional QSAR

Molecular similarity algorithms based on three-point pharma-
cophores are among the standard algorithms applied in 
industry.106 They are based on the three-dimensional structure 
of the molecule. Interaction types are assigned to all atoms of 
the molecule before all possible triangles of interaction points 
are constructed. Several thousand combinations of interaction 
points and binned triangle distances are possible (e.g. about 
33 000 in the case of six interaction types and ten distance 
ranges), but only a small fraction of bits is usually occupied 
(a single digit percentage).

Three-point pharmacophores can also be easily extended 
to incorporate a fourth pharmacophore point for descriptor 
generation, giving four-point pharmacophores.108,177,178 These 
are able to distinguish between geometrical isomers. A poten-
tial shortcoming is the large number of possible combinations 
of interaction points and distance ranges. Where three-point 

pharmacophores with six interaction types and ten distance 
ranges give rise to 33 000 possible descriptor bits, four-point 
pharmacophores with the same number of distance ranges and 
interaction types need about 13 million bits. Four-point pharma-
cophores were used to examine selectivity between thrombin, 
factor Xa and trypsin, which are all homologous serine pro-
teases.177 While three-point pharmacophores were not able to 
identify features responsible for selectivity, four-point pharma-
cophores appeared to identify important features. Nonetheless, 
the data set only comprised a very small number of molecules 
and further studies are necessary. Four-point pharmacophores 
have also been used for library design,178 here describing an 
example combinatorial library based on the Ugi condensation 
and a serine protease active site.

Nonetheless, the method has not yet found as wide an accep-
tance in the scientific community as its authors probably in-
tended. This is possibly attributable to the much larger amount 
of information, with bit strings about 300 times as long as in 
the case of three-point pharmacophores (which are then about 
13 Mbits or about 1.5 Mbytes long). Although four-point 
pharmacophores describing differences of the binding sites of 
different serine proteases were found,177 it may in practice pose a 
problem to select a few hundred relevant features out of several 
million, even more so given the dependence of the method on 
conformational changes.

CLIP (candidate ligand identification program)179 describes 
structures by the geometric arrangement of pharmacophore 
points. A maximum common substructure (MCS) routine based 
on the Bron–Kerbosch algorithm is employed for matching. This 
is usually applied to graphs derived from the two-dimensional 
structure. CLIP finds the largest set of points that is geometri-
cally equivalent in two molecules. In can be used for comparison 
of molecules and uses fuzzy matching, in sample searches it is 
reported to perform as well as Unity fingerprints.

Multi-dimensional QSAR approaches are an extension 
of QSAR algorithms using the three spatial dimensions for 
descriptor encoding, e.g. comparative molecular field analysis 
(CoMFA). The fourth dimension describes conformational 
sampling of the molecule.

Originally, four-dimensional QSAR was introduced by 
Hopfinger et al..180 Descriptors are ensemble averages of  grid 
cell occupancies of  each molecule and each conformation 
generated from a training set. From a high number of  possible 
descriptors, usually only a small fraction (typically between 10 
and 20) is selected by partial least squares. Then, genetic func-
tion approximation is employed to model a structure–activity 
relationship of  the compounds. In the introductory paper, 4D 
QSAR performs at least as well as 3D approaches but gives 
additional information. First, active conformations can be 
guessed. Second, important features can be part of  the activ-
ity function although they remain constant in all compounds. 
In addition, conformational entropy can be estimated which 
may provide a different method to select compounds for lead 
selection.

In 4D QSAR, relative and absolute similarity measures 
exist.109 Absolute measures use atoms; relative measures use 
grid cell occupancy descriptors. Absolute descriptors are not 
alignment dependent, whereas relative descriptors are. As an 
example, similarity calculations using D and L amino acids are 
given. The discussion gives some advantages of the 4D QSAR 
methods, but at least two of the advantages are also seen using 
other descriptors. Alignment is not necessary, as discussed 
above. Also, atom typing can, at least in principle, be changed 
to that found in other algorithms. The additional information 
of conformational sampling is definitely given in 4D QSAR 
compared to 3D QSAR, but one should keep in mind that not 
the amount of information but the signal to noise ratio is of 
importance here. Conformational sampling apart from covering 
conformational space also introduces noise into intramolecular 
distances, even more so in flexible molecules.
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Several applications of 4D QSAR have been published in re-
cent years. The construction of a virtual high throughput screen 
by 4D QSAR was applied to the design of glucose inhibitors of 
glycogen phosphorylase b, but no experimental testing of the 
constructed library is given.181 A 4D QSAR study of CYP450 
inhibitors showed that that even if  models give very similar 
predictions, the similarity of the models themselves could 
be surprisingly low.182 Cytochome P450 2D6 inhibitors have 
already been subject to an earlier 3D/4D QSAR study.183 A study 
using Propofol analogues gave identical results concerning the 
interaction sites.184 Not surprisingly, analogue compounds are 
predicted better than structures dissimilar to the training com-
pounds. Flavonoids binding to the BzR site of of GABA-A were 
examined by Hong and Hopfinger.185

Conceptually, the common receptor-independent (RI) 4D 
QSAR analysis has recently been extended to a receptor-depen-
dent (RD) version.182 The statistical quality of the RI and RD 
versions of 4D QSAR were found to be about the same, but pre-
dictivity of the RD version was found to be superior. The recep-
tor is conformationally sampled as well as the ligand. Although 
geometry pruning of the receptor is performed, conformational 
sampling is still computationally expensive. Receptor-dependent 
and receptor-independent 4D QSAR have also recently been 
applied to a set of nonpeptidic HIV protease inhibitors.186

A modified 4D QSAR algorithm, compared to the Hopfinger 
et al. version, is able to take local induced fit and hydrogen bond 
flip-flop into account.187 Allowing for a multiple representation 
of the receptor another dimension is added, giving a 5D QSAR 
method.188 This provides the possibility of allowing induced fit 
of the ligand–receptor complex.

7. Properties of fingerprints and similarity 
coefficients, effect of data fusion
Binary bit-strings, computed from the presence or absence of 
molecular features, are commonly compared using a similarity 
coefficient as a measure of similarity between structures. This is 
a particularly efficient method in the case of two-dimensional 
or other easy to calculate descriptors. In addition, binary repre-
sentations are suited to computer processing so they are usually 
very fast.

In this context there are two interesting points which deserve 
attention.

First, binary representations may not be unbiased representa-
tions of molecules. They may possess inherent properties which 
in effect skew results in similarity searching. For example, the 
presence/absence structure of bits, which in most cases do 
not consider the frequency of detected fragments, influences 
results.

Second, the selection of the similarity coefficient used (of 
which a large number exist13) determines the numerical value 
of the similarity. The question arises which coefficients perform 
best? On the one hand some of them are not as different as their 
names suggest, also, others may cluster a set of molecules into 
different categories. In addition, it has been suggested that com-
binations of predictions using different similarity coefficients 
may improve classification results.

The direct comparison of similarity coefficients is not subject 
of  this article. For a comparison of the performance of diffe-
rent similarity coefficients, see Whittle et al.189 (in the context 
of natural product databases), Salim et al.190 (also covering data 
fusion) and Holliday et al.39 (covering 22 similarity coefficients 
in combination with 2D fragment-based bit strings).

Bias of binary representations

Binary representations of molecules generally represent the 
presence and absence of features by setting and un-setting bits 
in the fingerprint. The frequency of features (e.g. substructures) 
is not usually encoded in the fingerprint. In order to reduce size, 
fingerprints may often be folded (e.g. Daylight fingerprints). All 

these steps destroy information about the molecule, but on the 
other hand make fingerprints denser and smaller. Alternatively 
(or as an addition), pre-defined keys representing substructures 
of the molecules can be generated and included in the string. 
The adoption of Markush-type entries in bit string representa-
tions, e.g. hydrogen bond donor, allows fuzzy matching of struc-
tural queries when looking for similar molecules.

Combinatorial effects

Binary representations of molecules already possess inherent 
properties, simply due to their presence/absence structure of 
common features. Computing the similarity of molecules using 
similarity coefficients usually results in a ratio of small num-
bers. Common fingerprints such as ISIS MOLSKEYS use 166 
predefined keys and most fingerprints are not larger than 1024 
bits. Thus, some ratios of small numbers are more likely to occur 
than others. Using fingerprints of up to 67 bits, Godden et al.191 
has shown that some ratios and thus similarity coefficients occur 
much more frequently than others. Using the Tanimoto coef-
ficient, 1/3 was most likely to occur. This is also the expectation 
value of infinitely long bit strings where half  of the bits are set. 
Values such as 0.25, 0.5 and 0.4 were also much more likely than 
other values. Random similarity values larger than 0.7 or 0.8 
(values which are commonly said to define “similar” molecules”) 
virtually do not appear. Depending on the database, similarity 
coefficient distributions vary.

Size dependence of similarity coefficients

The size dependence of the commonly employed Tanimoto 
coefficient37 (Tc) has already been known for several years, 
favouring larger molecules in similarity and smaller molecules 
in diversity selections. The reason for the size-dependence is that 
the size of a molecule influences the maximum Tc that can be 
computed for that molecule. This maximum is found if  all its 
bits are matched by bits from the query: There are still query 
bits which smaller molecules cannot match, and where larger 
molecules show bits not set in the query, thus decreasing the 
Tanimoto coefficient. For larger molecules, mismatch of bits 
results in the same absolute change of the denominator, but 
due to larger absolute numbers the effect is a smaller relative 
change.

Flower40 notes that larger molecules generate a different dis-
tribution of similarity scores when scoring a molecule database, 
compared to smaller queries. When larger queries are used, the 
Tanimoto coefficients tend to become on average larger and also 
more spread out. Thus it should be kept in mind that Tc values 
are not directly comparable among different queries. The size 
dependence was also examined by Dixon and Koehler,41 who 
used the Tanimoto coefficient, XOR and the Euclidean distance 
in combination with ISIS Molskeys and Daylight fingerprints, 
applied to the RBI and current medicinal chemistry (CMC) 
databases. The performance measure was biological target 
coverage. The diversity measure 1-Tc was found to have the most 
profound bias with respect to size. Still, this is not necessarily a 
problem, provided there are small compounds that are active in 
the database. The XOR classifier in turn slightly prefers large 
compounds in diversity selection. Holliday et al.192 confirms that 
the Tanimoto coefficient is a poor tool for diversity selection 
if  the Tanimoto coefficient is low, as it performs only as well 
as random selection of compounds. Again it is found that the 
Tc distribution depends on relative bit densities of compounds. 
Fourteen similarity coefficients were assessed, determining 
upper and lower bounds and other characteristic properties. 
Self-similarity plots of libraries are used to assess molecular 
diversity of libraries.

Attempting to rid the Tanimoto coefficient of its size bias, a 
size-modified Tanimoto coefficient was recently introduced.193 
This analysis suggests that using this methodology, size-depen-
dence should be removed. However there exists no comprehen-
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sive study of its performance. Interestingly (or confusingly), in a 
different study189 its performance was found to be similar to the 
original Tanimoto coefficient.

Clustering of similarity coefficients and consensus scoring

Several dozen similarity coefficients are known in the literature. 
Some studies were undertaken to cluster similarity coefficients, 
presenting the opportunity to select measures from different 
clusters with the objective of improving results.

Experimentally, Unity fingerprints were used in combination 
with 22 similarity coefficients and the NCI AIDS and IDAlert 
database for similarity coefficient clustering and consensus scor-
ing.39 Using an early stopping criterion, 11 clusters of indices 
were obtained, using a later criterion similarity indices were 
classified into three clusters. This research was extended190 to 
include the MDDR database and BCI and Daylight finger-
prints, giving rise to 13 clusters of similarity indices. It was also 
found that different coefficients perform better in certain ranges 
of molecular size (or bit density). The Russell–Rao coefficient 
was found to perform better in the case of large queries, while 
the Forbes coefficient performed better on small queries. The 
Tanimoto coefficient was outperformed in many cases, but not 
consistently. The good performance of Russell–Rao and the 
weak performance of Forbes were also observed in an applica-
tion using the dictionary of natural products database (DNP),189 
where the Tanimoto coefficient was often outperformed by a 
factor of two.

The theoretical basis of  improving classification results by 
consensus scoring was presented by Wang and Wang.194 In a 
hypothetical experiment, a library containing 5000 compounds 
was created and a Gaussian error distribution of affinities (but 
no systematic errors) was added. Assumptions such as indepen-
dence of scoring functions were found realistic enough. Impor-
tantly, it was found that consensus scoring performs better due 
to the simple statistical reason that the mean value of repeated 
samplings tends to be closer to the true value. Performance 
measure was the number of misranks (pairs of structures not 
in the correct order), and was shown to increase continuously 
with the number of methods added. The authors conclude that 
three or four methods are best and recommend data fusion by 
rank or score.

A criticism of the work by Wang was given by Verdonk et 
al.,195 who empirically analysed the quality of the Goldscore, 
Chemscore and Drugscore scoring function for identifying 
active compounds and combinations thereof (rank-by-rank, 
rank-by-number and rank-by-vote). While, as predicted by 
Wang, the quality of consensus rankings also decreased in the 
order rank-by-number (called score in Wang’s analysis) > rank-
by-rank > rank-by-vote, Verdonk stressed that, in practice, scor-
ing functions are hardly of very similar quality for all targets, an 
assumption used by Wang. The empirical finding that consensus 
scoring hardly performs better than the best individual scoring 
function can thus be explained by the fact that inferior scoring 
functions only introduce noise into the evaluation. Nonetheless, 
consensus scoring generally was found to give more robust 
results than single scoring functions.195

This finding was confirmed when the clustering of similarity 
coefficients was used to select sets of  similarity coefficients for 
consensus scoring.39,190 Out of seven targets in all except one (b-
lactamase) improvement in classification was observed in most 
cases when three or more similarity coefficients were used.

There are different possibilities to combine information from 
several scoring algorithms to provide a single prediction. Using 
several data sets, Ginn et al.196 used MIN, MAX and SUM rules, 
defining the combined prediction by the lowest, highest and aver-
age prediction of the individual methods. Here it was found that 
consensus scoring performed better (and significant at p < 0.05) 
in 28 out of 30 runs, if  the SUM rule is used. In practice, one 
can use this information to determine how to deal with multiple 
active structures which are known, and in the latter publication 

it is suggested that adding up individual scores of each pair of 
query and library compound improves results.

In docking procedures, it has been reported that data fusion 
improves classification results. This may be due to different 
scoring functions describing different aspects of the interaction, 
e.g. Poisson–Boltzmann calculations describe the desolvation 
energy accurately, but do not account for hydrophobic inter-
actions. Reducing the number of false positives may be the 
principal effect as was seen in analysis of MAP kinase, inosine 
monophosphate dehydrogenase and HIV protease and 13 scor-
ing functions where data fusion was seen to consistently reduce 
the number of false positives.197

8. Applications of machine learning methods
Machine learning methods attempt to generate rules or models 
that cluster similar compounds together, usually to predict the 
properties of other compounds via application of the clustering 
method or model. Different methods have different advantages. 
For example, artificial neural networks (ANNs)198 are able to 
model flexibly a relationship between input and output vari-
ables, but this flexibility can also be problematic, in particular in 
the case of underdetermined systems. Inductive logic program-
ming (ILP)199 has the advantages that human-understandable 
rules can be derived and that new relationships can be inferred, 
but has problems with noisy data and a potentially very large 
hypothesis space. Using ILP on different data sets, it was found 
to perform as least as well as other approaches,200 although 
direct comparison is difficult.

Neural networks have many applications in the literature 
in the field of clustering similar compounds e.g. recently NNs 
have been applied to profiling of GPCR-active compounds.201 
The hidden aspect of the model produced and the tendency to 
over fit are the main criticisms of these methodologies. They are 
particularly good though at ‘memorising’ a given state, which 
can be useful when searching for other similar states (similar 
molecules).

In recent years, support vector machines (SVMs)202,203 have 
been employed to molecular similarity problems. SVMs try to 
maximize the separation boundary of instances from different 
classes and are sometimes faster to train than artificial neural 
networks.202,203 Some applications of SVMs are summarized 
below.

When compared to different types of  artificial neural net-
works, radial basis function networks and C5.0 decision trees, 
SVMs were found to perform considerably better on a dataset 
of  dihydrofolate reductase inhibitors.204 In addition, training 
was fastest of  the methods tried. Applied to a drug/non-drug 
classification problem, SVMs also outperform ANNs slightly.48 
This result is consistent and does not depend on descriptors 
or size of  the datasets. In a similar application predicting 
drug-likeness and agrochemical-likeness,205 SVMs consis-
tently outperform ANNs. In addition, a QSAR model that 
was developed to predict activity outperformed earlier QSAR 
methods. An application of  SVMs for prediction of  ADME 
properties206 has also been performed, using blood–brain bar-
rier penetration, bioavailability and protein binding datasets. 
For blood–brain barrier penetration and protein binding SVMs 
with RBF and quadratic kernels, respectively, performed best 
whereas on the bioavailability data set ANNs were of  superior 
performance.

A slightly different application used SVMs in combination 
with active learning.207 Active learning uses knowledge obtained 
about formerly untested compounds. A set of active compounds 
is known from which a model is built. This model is used for 
screening of a library. Information about the tested compounds 
in every screening step is then fed back into the model. Active 
learning has also been combined with other machine learning 
approaches, such as k-nearest neighbour methods and C4.5 
and a simple OR classifier.208 The transductive OR classifier 
performs best and continuously selects meaningful features. The 
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performance of other methods deteriorates if  more and more 
features are selected.

Other applications of machine learning methods in chemin-
formatics applications of similarity comprise binary kernel 
discrimination49,50 and the naïve Bayesian classifier.51–53 Binary 
kernel discrimination in combination with atom pairs and topo-
logical torsion descriptors gives robust results (robust to noise) 
and slightly outperforms neural networks. The naïve Bayesian 
classifier in combination with atom environment descriptors 
is able to accommodate knowledge from multiple active com-
pounds and in test sets examined, outperformed other com-
monly used methods which are based on both two-dimensional 
and three-dimensional structure.51,52

9. Conclusions and outlook
In this perspective we have reviewed progress in molecular simi-
larity methods and applications and highlighted some of the 
more challenging problems and assumptions.

Molecular similarity is extensively and successfully used in 
the drug discovery context often to compare molecules in the 
absence of other mechanistic information (a partial exception 
is the docking applications described above). Most importantly, 
similarity has a context. One has to be aware that similarity 
defined on molecules alone in the absence of the medium in 
which they act is an incomplete description so great care has to 
be taken to use descriptors that are appropriate.

The discontinuous nature of biological effects such as ligand–
receptor binding means that linear regression techniques are 
only appropriate for QSAR and related applications if  a linear 
relationship between feature space and activity exists. In general 
it is often more appropriate to use nonparametric or non-linear 
regression techniques. The example of electrostatic effects and 
their discontinuous relationship with solvation energies is an 
example.

Back-projectable descriptors (compared to descriptors with-
out this property) possess better interpretability and will prob-
ably have more widespread use in the future. Binary bit strings 
in combination with similarity coefficients possess preferences 
with respect to bit density (and thus size of the molecule) and 
combinatorial preferences and one should be aware of these 
preferences when applying similarity methods. Applications of 
machine learning methods in computer-aided molecular design 
will certainly gain importance in the future particularly with the 
incorporation of heuristics that improve performance.

As understanding of the chemistry and biology of drug 
action improves and a greater ability to model the underlying 
mechanisms appears, the need for ‘similarity’ approaches will 
diminish.
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